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1. INTRODUCTION

1.1 Cbjective

The Multi-Ser..or Scene Synthesis and Analysis Study was conducted by
Digital Decision Systems, Inc., under contract F30602-80-C-0084 for the
Rome Air Development Center during the period of 1 February 1980 to
1 April 1981. The fundamental problem considered in this research was
the design of a computer imaging system which contained the combined
capabilities of modern image analysis and <cene synthesis. These com-
bined capabilities, if made available in a compact, easy-to-use system,
would provide an unparalleled research facility for image and scene
analysis and synthesis.

The objective of this study was to investigate modern image analysis
and scene synthesis techniques in relation to key aspects of a computer
image generation, storage, and usage system. Through the application of
a variety of image processing algorithms and control software, a flexible
image analysis and synthesis research aid could be established. Tnhis aid,
called the Image Assembly System (IAS), is described in this report.
Special emphasis has been given to image construction flexibility and
processing system design requirements. The principal result of this
effort is the design of a versatile facility for investigating fundamental
aspects of image usage.

The significance of this work is reiated to the increasing amount
of digital image analysis and scene synthesis being applied to advanced
Air Force applications. Typical applications range Trom the genera%ion

of airborne sensor image predictions, flight simulator imaging systems,




ity L

terminal guidance, image processing and reference scene generation, and
image compression and reconstruction. Each of these applications entails
computer processing and storage of image and scene information. Because
of the large amount of information in the data and the requirement of
real time processing, the cdesign factors such as speed, cost, size, and
complexity must be carefully assessed.

The Image Assembly System design presented in this report was arrived
at after a thorough literature search in both the image analysis and
scene synthesis areas, a study of the algorithms used for image analysis
and scene synthesis, and a study of currently available hardware and
software systems. The underlying hypothesis has been the investigation of
the feasibility of combining both analysis and synthesis features into a
single system to provide a powerful research aid.

A summary of the principal areas of research and development in scene
analysis is presented in Section 1.2, and a corresponding summary for
scene synthesis is given in Section 1.3. An outline of this report is

given in Section 1.4,

1.2 Scene Analysis Summary

The purpose of digital scene analysis procedures is to arrive at

an understanding of the elements composing a scene and their relationships.

The definition of "understanding" for a specific application depends on
the nature of the problem one wishes to solve. In analyzing a scene of
military interest, for example, the desired level of understanding may

range from the relatively simple problem of determining if the scene

contains any changes from a previously-observed scene, to the considerably




more complex task of identifying specific targets and ranking them in
order of importance.

State-of-the-art algortihms for scene analysis may be divided into
four broad cat~agories:

1) Sensing and preprocessing;

2) Segnmentation;

3) Recognition and interpretation; and

4) Organization and processing of scene data.

1.2.1 Sensing and Preprocessing

The sensing problem is one of converting a physical scene into a form
suitable for computer processing. Sen:ors are cateqorized by their re-
sponse in the electromagnetic energy spectrum (2.g9., x-ray, optical, }
infrared, microwave, and ultrasonic). Often, the choice of an imaging
sensor is determined by the environmen: in which it is expected to
operate. For example, under-water applications usually preclude the use
of sensors other than low frequency devices. In situations where more
than one type of sensor could be used, additional constraints such as
resclution, size, weight, and cost play a deciding factor.

Although scene analysis is basically a three-dimensional problem,

much of the present work in this area is carried out using planar

(image) views. This is due both to limitations in three-dimensional
sensor technology and to a lack of procedures for segmentation, recogni-
tion, and interpretation of three-dimensional data. Spatial relationships
of objects in a scene are approximated by using approaches such as

stereo image processing and range imaging.
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Preprocessing techniques typically used in scene analysis include
noise reduction, enhancement, and restoration. In applications requiring
fast processing, the usual approach is to approximate a preprocessing
function by a small template (e.g., a 9 x 9 template) 2nd use spatial

convolution implemented in special-purpose hardware.

1.2.2 Segmentation

The purpose of segmentation is to partition the scene space into
meaningful regions. Segmentaticn techniques can be divided into two
principal categories: point dependent and region dependent. Point
dependent techniques deal with methods that examine the scene on a
point-by-point basis. Examples in this area include intensity, color,
and rang2 thresholding. This type of processing is suitable for cases
where the quantity being thresholded exhibi%s a small number of distinct
variations (e.g., in segmenting bright objects from a dark, uniform
background).

Region dependent techniques are based on regional properties of a
scene, The most notable approaches in this area iiclude template
matching (e.g., gradient, line, and edge detectors), texture segmentation,

edge segmentation, and region growing.

1.2.3 Recognition and Interpretation

Recognition is basically a labeling process; that is, the function
of recognition algorithms is to identify each segmented object in a scene
and to assign a label (e.g., road, vehicle, building) to that odject.

The design of recognition procedures for scene analysis consists of two




basic steps: selection of a set of features or descriptors, and selection
of a classification strategy.

The principal descriptors used in scene analysis are based on shape
and amplitude (e.g., intensity) information. Shape descriptors attempt
to capture invariant geometrical properties of an object. This has been
an i1lusive goal which has lead to an impressive number of proposed
techniques for shape description. Techriques for shzpe analysis and

description are either ylobal {region) or boundary oriented. Global

techniques include principal axes analysis, texture, two- and three-
dimensional moment invariants, geometrical descriptors such as perimeter

squared/area and the extrema of a region, topological properties such as

the Euler number, and decomposition into primary convex subsets. Boundary
techniques are based on thinned or skeletonized scene components. They
include: Fourier descriptors, chain codes, graph representations (of ]
which strings and trees are special cases), and shape numbers. Vari-
ations and inconsistencies in shape are handled by the use of models,
rubber masks, relaxation, and syntactic techniques.

Classification strategies in use today may be subdivided into two :
principal categories: decision-theoretic and structural. Decision- p
theoretic technigues are based on the use of decision (discriminant)

functions. Given M pattern vector classes, Wy slgss s« aliys the decision-

theoretic approach consists of identifying M decision functions d](g),
dg(L)----dM(i) with the property that, for any pattern vector x* from

class wy, di(éf) > dj(éf), j=1,2,...M j¥i. The objective is to find




M decision functions such that this condition holds for all classes with
minimum error in misclassification.

Structural methods of pattern recognition are attempts to describe
fundamental relationships among pattern primitives via discrete mathe-
matical models. The most widely used method is syntactic pattern
recognition in which concepts and results in formal language theory pro-
vide the structural descriptions. By contrast, decision theoretic
approaches deal with patterns on a strictly quantitative basis, thus
largely ignoring interrelationships among the primitives.

The existence of recognizable and finitely describable structure is
essential for success in the syntactic approach. The lack of general
inference techniques has meant that applications thus far have been
largely confined to pictorial patterns characterized by shapes which the
designer perceives and can describe via a grammar; for example, handwritten
characters, chromosomes, fingerprints, particle collision photographs,
speech and physiological wavefonns, and general plane contour shapes.

One of the most significant recent extensions of syntactic techniques
has been the explicit inclusion of semantic evaluations simultaneously
with syntactic analysis by means of attributed grammars. A pattern
primitive is defined by two compone.ts: a token or symbol from a finite
alphabet, and an associated lis* of attributes consisting of logical,
numerical, or vector values. Basically, the symbolic component denotes
a class of primitives and the attributes give the feature values for a
specific instance of a primitive in a pattern; these values are usually
obtained by nonsyntactic pattern recognition methods, such as discriminant

analysis.




Interpretation may be viewed as the process which, together with
recognition, assigns attribute values to the primitives in a given.
representation. Although most present interpretation approaches for

digital scene analysis are primarily heuristic or interactive techniques,

promising formal approaches are emerging which attempt to unify the
concepts of semantic/syntactic information in a scene. While these 5
techniques are not vet fully developed, there are numerous specialized ﬁ

applications where even a limited degree of interpretation based on

e iy ik,

recognition of important features could have a significant impact.

Examples include the categorization of aerial scenes as being either of 7

military or nonmilitary interest, the rejection of faulty electronic
components in an assembly line, adaptive control of robots by visual

feedback, and autonomous target detection systems.

1.2.4 Organization and Processing of Scene Data ‘ o
From the viewpoint of computer data storage and manipulation, a
digitized scene is a data base. Even with large, fast computers, the
designers of a computer-based scene processing system cannot neglect the
design aspects of data bases and data structures, because a successful
data base design not only improves the efficiency of the data storage and

manipulation operations, but enhances the documentation and verification

of all algorithms used to process the data. It can in fact be shown that
for many complex algorithms, the organization of the input and output
data is as critical to the effectiveness of the algorithm as is any

other single factor.




In the case of scene analysis, use of a hierarchical data base
as the overall organization of symbolic representations of scenes
implies a fundamental hierarchy ranging from the lowest level scene
primitives to the highest level labeled forms. Use of a relational data
base to store the characteristics of each node in the hierarchy has been
found effective for representing the kind of detailed information that
must appear with each item in @ scene hierarchy.

The concepts underlying relational and hierarchical data bases are
the foundations for a Togical, efficient mechanism for scene analysis

algorithms.

1.3 Scene Synthesis Summary

The purpose of scene synthesis is to provide an image representation
of a three or more dimensional scene. Although the largest market for
scene synthesis systems has been in flight simulators, the advantages and
cost effectiveness of scene simulation in almost all aspects of science
and engineering are now being applied.

The following table of application areas, market values, and percent-
ages was recently presented in an ItEE Tutorial on Computer-Assisted
Design and Engineering.*

APPLICATIONS 1979

M$

Electrcnic CAD/CAM 400 27%
Mechanical CAD/CAM 350 24%
Cartography 210 14%
Process Control 115 8%
Business (MIS) 70 5%
Art and Animation 30 2%
Other 275 20%

TOTAL 1450 100%

*From Tutorial Notes on Computer-Assisted Design and Engineering,
IEEE Spring COMPCON, San Francisco, CA, February, 1981.




Significant accomplishments can easiiy be cited for each area in
the table. Perhaps the area of widest impact in terms of electronic
applications is the design of VLS! integrated circuits. Not only the
circuit elements and interconnections, but three dimensional electro-
magnetic circuit components as well, can be analyzed by computer and
final artwork can be produced. Even though custom VLSI chip production
is currently in the cost range of $40,000, the projected costs in the next
few years may be as low as $500.

Exciting applications in mechanical design are alsc occurring.

A popular three-dimensional surfuace display program, MOVIE.BYU,
developed at Bringham Young University, is reported to have nearly
2,000 users throughout the world. This program permits polygonal
representation of three-dimensional solids, as well as deformation

and stress analysis. One of the most interesting cartographic applica-
tions is the Presidental Information System, which is a color graphics
system designed to provide our national leaders with the latest
demographic infcrmation, as well as current information in areas such
as employment rates and productivity throughout the nation. Some of the
most important process control applications are being conducted in the
nuclear industry. For example, TVA produces a full, three-dimensional
computer model of each of its nuclear reactor designs before it is
built, then maintains the computer model throughout construction and
operation.

Due to the high cost of scene simulation, most business applications
art oresently two-dimensional graphs and plots of important data. The

art and animation areas of application are perhaps the best known.




A recent example is the computer scenes in the popular movie, Star Wars.
Note that the other applications listed in the table contain a relatively
large percentage--20%--of the market. These include the military
applications as considered in this report, such as flight simulation,
sensor simulation, and reference scene preparation for missile guidance.

Scene synthesis consists of the processes by which a real or
synthetic scene can be input, represented, characterized, and transformed
for viewing or analysis. This scene synthesis study was directed toward
the definition of algorithms for interactive or automatic construction
of both surface shapas and sensor response characteristics. The scene
synthesis process was divided into four elements:

1) scene data generation;

2) surface description and representation;

3) surface characteristics; and

4) viewing transformations.

1.3.1 Scene Data Generation

Scene data generation consists of methods for generating the
computer data base required for representing both topographic and man-
made structures. Topographic data may consist of point and line data,
surface data, and volume data. Man-made structures may consist of
existing objects or synthetic objects. For existing objects, a variety
of mensuration and nhotogrammetric techniques can be used for measure-
ments of the surfaces. Also, several three-dimensional digitizers
based upon mechanical, ultrasound, light, or imaging techniques are

available. For synthetic objects, structures may be input by analytical

10
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specification, digitization from multiview drawing, building block tech-
niques, or polygonal surface specification, each with interactive editing

and constraint specification.

1.3.2 Surface Description and Representation

Surface description consists of constructing the interral computer
data base representation of the scene. Several methods are available
for representing both planar and curved surfaces. Patch representation
requires the subdivision of a scene into regions bounded by a closed
set of curves. The intersection vertices or knots are often the only
informationwhich the designer must specify with the form of the curve
preselected. For example, a plane surface may be constructed between
a set of three-dimensional vertices with a connection matrix specified
by forming plane surfaces to fit the vertex array. To describe curved
surfaces, several representations may be selected, including Bezier
cubic polynomials, B-splines, Catmull cubic splines, or Coons surfaces.
The data structures for surface description are also very important,
since both the amount of storage required and the com.utation required
for the viewing transformations are dependent upon the data structure.
Several different data structures have been described in the literature,
including a vertex 1list, vertex lists with pointers, pointers to
edges, adiacent polygons, winged edge, curved surface canonical represen-
tations, and curved surface corner control point. A curve surface method
will be required for the Image Assembly System. Also, since normal and
tangent vectors will be required for display, these must be included in

or easily computed from the data structure.

1
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1.3.3 Surface Characteristics

Surface characteristics as viewed from cny type sensor must be
included in the Image Assembly Syistem. In general, the elements which
must be considered include the illumination source and shading mechanism,
color chara;teristics, specular and highlight effects, texture generation,
and shadow generation. Other specic! effects, such as wrinkled surface
display, may also be important. The surface characteristics for a given
sensor may be described in terms of objective characteristics such as
illumination beam pattern, receiver point spread function, or nonlinear
transfer function, gain and signal-to-noise ratio, and display format.
To generate a pa:cicular display, real time viewing transformations are

required.

1.3.4 Viewing Transformations

Viewing transformations, including the world space to eye space
and the eye space to image space, may be implemented by a 4 x 4 matrix
transformation. Also, clipping and windowing algorithms are available
for real time display. Hidden surface alimination is themost difficult
algorithm tc implement in real time. Several methods, including the
depth buffer algorithm, scan line algorithm, and the priority algorithms,

were analyzed for possible inclusion in the Image Assembly System.

1.4 Outline of the Report

A detailed analysis of the algorithms for image analysis and scene
synthesis are described in Sections 2 and 3. Included are the most
commonly used as well as state-of-the-art techniaues for image analysis

such as image enhancement, segmentation, and feature extraction. Also
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included are key algorithms for scene synthesis such as discrete surface
representation, hidden surface elimination, and surface shading.

The linage Assembly System design is described in Section 4. The
hardware and software considerations are based largely upon the analysis
of algorithms presented in Sections 2 and 3. General designs for both
image analysis and scene synthesis are presented separately.

The performance specifications for the Image Assemb? System are
presented in Section 5. This system has combined capabilities for
performing the key algorithms and tasks for both image analysis and
scene synthesis. Although general performance specifications are given,
an example system of existing hardware components is also presented to
demonstrate the practicality of the design.

Finally, the conclusions reached from this study and recommendations

for further work are presented in Section 6.

13

i i




2. SCENE ANALYSIS

2.1 Introduction

Digital scene analysis may be defined as the process of using a
digital computer to extract, characterize, and interpret information from
images of a three-dimensional world. Interest in scene analysis methods
ranges from biomedical to industrial and military applications. Regard-
less of specific application, however, an essential characteristic of
digital scene analysis techniques is the use of a machine for performing

"intelligent" tasks, where the standard for intelligent behavior on the

part of the machine is established by the capability of a human in success-
fully performing the same tasks.

The importance of scene analysis techniques in the broader field of 3
machine intelligence can be easily grasped by a cursory review of the
application areas in this field which are based on pictorial information.
For example, a significant portion of current research in robotics as a
means for enhancing industrial productivity is directed toward machines
that, ideally, should be able to perceive and interpret information in a
working environment such as an assembly area. The advantages of this
approach over preprogrammed machines include adaptability of the same

machine to a variety of tasks and the relaxation of the structure of the

working environment to allow a more random placement of parts and tools
in the assemby area. Other applications, such as machine analysis of
chest x-rays and chromosomes, character recognition, fingerprint identi-
fication, satellite image interpretation, 1nfr5red, optical, and radar

target acquisition, and autonomous navigation of rovers for unmanned

14
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exploration are largely based on the analysis and interpretation of digi-
tal images.

An important aspect in the implementation of scene analysis proce-
dures is the inverse relationship that generally exists between data
volume and knowledge about a sc~ne. A single television camera serving
as an input to a scene analysis system has, when digitized into a 512 x
512, &-bit, array a raw data throughput rate that exceeds 62 xJO6 bits/
sec. Often, however, portions of a scene that contain information
relevant to a specific application require a much lower data rate.
Consider, for instance, the problem of detecting missing components in a
circuit board. In order to detect events of interest in this application,
only one frame of video would be required per unit to be inspected. If
the inspection system were a matching device that compares an unknown
input against a stored piototype image, a weighted and thresholded
difference betw=en this prototype and the unknown often suffices to
detect significant changes. The difference image can usually be repre-
sented with fewer bits, bu. it contains the necessary information for the
solution of this paruvicular problem. In other words, the prirary interest
in this case is siuply the degree of similiarity between the prototype and
the input. A decision as to the state of the input unit can be carried
out from this information.

In more complex analysi: niobiems, extraction ~f knowledge from a
scene involves a 'ierarchy of steps which grow progressively more diffi-
cult as a function of knowledge gained. Thus, the more we wish to know
about a scene, the more complex (in terms of presently known techniques)

the process for extracting the desired information. In the example just
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described, it is evident that detecting missing parts in a circuit board
is not a particularly difficult problem. However, counting components,
checking their labels, and looking for broken pieces is quite a different
matter, involving alnorithms which are conside.al’y more complex or may
not have practical implementation because of storage and processing
requirements.

One of the principal characteristics of scene analysis, in fact, of
machine intelligence in general, is the use of heuristics. There is no
general theory for selecting the measurements, features, recngnition, and
interpretation techniques needed for the implementation of scene analysis
systems. Although some aspects of these problems have elegant theoretical
formulations (e.g., optimum decision rules, search strategies, inductive
inference) the state-of-the-art in this field is strictly problem-
oriented, where methods are selected based on their performance in a

given application.

2.2 A Model of the Scene Analysis Process

As illustrated in Fig. 2.1, the process of digital scene analysis may
be divided into four principal categories: (1) sensing and preprocessing,
(2) segmentation, (3) recognition, and (4) interpretation. It is important
to note that these subdivisions are suggested for convenience and, to a
certain extent, by the way in which scene analysis systems in use today
have been implemented. It is not implied that human vision and reasoning
can be so neatly subdivided nor that these processes are carried out
independently of each other. For instance, it is logical to assume that

recognition and interpretation are highly interrelated functions in a
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human. These relationships, however, are not yet understood to the point
where they can be modelled analytically. Thus, the subdivision of
functicns discussed in this section may be viewed as practical (albeit
limited) approach for implementing scene analysis systems given our level
of understanding and the analytical tools presently available for the
solution of this problem.

The sequence of steps discussed above leads to decomposition of a scene
into simpler elements and the arrangement of these elements in the form
of a hierarchical representation of the scene. This concept is illustrated
in Fig. 2.2 using a simple scene. The highest node in the hierarchy
represents the scene itself. At the next level, the scane is composed of
several objects: a group of blocks, a nyramid, the wall, and the floor.
At the next level, it is shown that the group of blocks is composed of a
big block and a 1ittle block. The level below this shows that the objects
are composed of regions; and finally in the last level, we see that the
regions are composed of edge segments, which are numbered in the figure
for easy referenca.

As implied in the foregoing discussion, obtaining a decomposition of
this type can be fairly simple for a human, but is generally quite compli-
cated for a computer. In practice, most procedures for generating a
hierarchical representation start at the bottom with the most primitive
elements (e.g., the edges) and attempt to arrive at the top node in a
bottom-up manner. The basic approach for implementing this bottom-up
procedure may be explained with the aid of Fig. 2.3. Starting with a
digital representation of a scene derived from one or more sensors, the

first problem is to identify and label the primitives in the :cene.
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Figure 2.2. A simple scene and its hierarchical representation.
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Examples of commonly usedprimitives are edges, boundaries, and vertices.
It is noted that, in Fig. 2.3, the process of assigning a label to a
primitive is basically a recognition problem. For instance, if edges are
being used as primitives, the first step is to recognize the presence of
edges in the scene and to categorize these edges according to type based
on descriptors such as length and orientation.

Higher levels in the hierarchy are explained in a similar manner.
Labeled parts are obtained by recognition based on the labeled primitives.
In turn, these parts are used as inputs to recognition procedures for

detecting objects. The resulting labeled objects are classified to form

clusters based on some predefined measures of similarity (e.g., man-made

objects). The labeled clusters of objects are then recognized as forming
a scene of a certain type (e.g., either of military or of non-military
interest). Finally, the interpretation stage uses the resulting hierar- 4
chical representation, and possibly representations from other scenes, to
produce an analysis of the scene.

Figure 2.3 is consistent with the above discussion concerning the four

basic processes involved in scene analysis: sensing and preprocessing,
segmentation, reccgnition, and interpretation. In the present model,
segmentaticn techniques are used to extract primitives, parts, and objects

from a scene, and recognition algorithms are used to identify (label)

these elements. Recognition is also used to group these objects into i
clusters and to identify the type of scene under consideration. Finally, |
the int  -etation stage yields an analysis of scene composition and :

meaning.




The remainder of this chapter is devoted to a detailed discussion
of these functions and other aspects related to scene analysis, such as
the organization of scene data in a form suitable for processing in the

context of the hierarchical model of Fig. 2.3.
2.3 Sensing and Preprocessing

2.3.1 Types of Sensors

The sensing problem is one of converting a physical scene into a
form suitable for computer processing. Although a detailed discussion
of sensor technology is outside the scope of this section, it is impor-
tant to briefly discuss the principal types of sensors used in scene
analysis applications to give a basic idea of the factors affecting the
choice of a particular sensing approach over another.

Sensors are categorized by their response in the electromagnetic
energy spectrum (e.g., x-ray, optical, infirared, microwave, and ultra-
sonic). Often, the choice of an imaging sensor is strictly determined by
the environment in which it is expected to operate. For example, under-
water applications typically preclude the use of sensors other than low
frequency devices. In situations where more than one type of sensor can
be used, additional constraints such as resolution, size, and weight play
a deciding factor.

Although scene analysis is basically a three-dimensional problem,
much of the present work in this area is carried out using planar (image)
views. This is due both to limitations in three-dimensional sensor tech-

nology and to a lack of procedures for segmentation, recognition, and

interpretation of three-dimensional data. Spatial relatvionships of objects
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in a scene are approximated by using approaches such as stereo image

processing and range imaging [1, 2].

2.3.2 Noise Reduction

One of the principal aspects of preprocessing in practical applica-
tions is noise reduction. The purpose of noise reduction is to "clean-
up” an image in crder to increase the probability of correct segmentation
and reccgnition.

Noise reduction algorithms can be divided into twe principal cate-
gories: frequency-domain and spatial-domain methods. Frequency-domain
techniques are based on the Fourier transform. The procedure is to
obtain the Fourier transform of an image, apply a filter (e.g., a bandpass
filter) designed to supress frequency regions where the noise is dominant,
and then to follow this operation by the inverse Fourier transform to
yield an image with a Tower noise content. We will not discuss
frequency-domain techniques in any detail here because (1) they are well
documented in -~ -umber of references [3] and (2) they are typically too
slow and difficult to implement in practical military systems.

Spatial-domain techniques based on processing small regions in an
image are receiving increased attention because they are much simpler to
implement in hardware and can often be made adaptive to changing noise
characteristics, an important feature in military applicaticns where a
system is expected to operate in a variety of unknown conditions. This
approach to noise reduction is illustrated below by a recent algorithm
due to Lee [4, 5] which is capable of processing images with both

additive and multiplicative noise. In addition to its adaptability
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properties, this algorithm can aiso be implemented in real time with

modest hardware.

2.3.2.1 Aduitive Noise Filtering
Let f(x,y) be the brightness of a digital image pixel at coordinates
(x,y), and let n(x,y) be the value of an additive noise component at those
coordinates. The corresponding degrated (noisy) pixel at (x,y) is given
by |
g{x,y) = f(x,y) + n(x,y) (2.3-1)

Given g(x,y) and some knowledge about n(x,y) the objective of noise
filtering is to obtain an estimate of the true image pixels, denoted by
f(x,y), which optimizes some criterion. Most current approaches to this
problem employ frequency domain techniques, direct invertion, or recursive
Kalman filtering [3, 7, 8]. Unlike the algorithm discussed in this section,
these approaches are not computationally efficient in terms of real-time
processing.

Assume that

Eln(x,y)] = n(x,y) = 0 (2.3-2)

ard

En(x,y) n(i,§)] = o (2.3-3)

6xy Gij
where § is the Kronecker delta function (i.e., Gij =1 4if i=jand 0 if
i #3), Eis the expectation operator, and 02 is the noise variance.

Equation (2.3-2) states that the noise must have zero mean and Eq. (2.3-3)

says that the noise must be spatially uncorrelated. The first condition
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can be easily met by normalization; the second condition is usually true
in practice.

Using Eqs. (2.3-2) and (2.3-3), it follows from Eq. (2.3-1) that
f(x,y) = ELf(x,y)] = E[g(x,y)] = g(x,y) (2.3-4)

and

ECLF(x,y) - F(x,y)1%

ECLa(x,y) = 3(xay)1%) - o
2

Q(x,y)
2

(2.3-5)

vix,y) ~ o

It is noted that the term E{[f(x,y) - ?(x,y)]z} is, by definition, the
variance of the original, uncorrupted image at coordinates (x,y).
Similarly, vi(x,y) = E{{g(x,y) - §(x,y)]2} is the variance of the noisy
image at these coordinates.

A weighted-least-squares estimate of f(x,y) is obtained by consider- §

ing the criterion function [9]:

3 = 1/2([F(x.y) - F(xy'12/Q0x,y) + [g(x.y) - a
f(x,y)] /0’ } ’

To determine the estimate, %(x,y), that minimizes J we consider the

differential

dd = df(x,y) {[f(x,y) - F(x,y)1/Q(x,y) - [g(x,y) -

2 (2.3-7)
f{x,y)1/e%}

In order that dj = 0 for arbitrary df{x,y), the coefficient of df(x,y) in
Eq. (2.3-7) must vanish; that is,




[F(x,¥) - F(x,y)1/Q(xsY) = [9(xsy) = F(x,y}/a? (2.3-8)

where f(x,y) is che desired estimate to make the coefficient vanish.

f Simplification of Eq. (2.3-8) yields

e

Flxy) = Flxay) + —2Ed) (k) - F(x,y)]
Qx,y) + o :

(2.3-9) 3

= T(x,y) + k(x,y)[g(x,y) - F(x,y)] j

3

for all coordinates of M x N image; that is, x =0, 1, 2, ..., M- 1 and f
.y=0! .I, 2; “ ey N"].
L In order to interpret this result, it is noted that both Q(x,y) and

02 are positive and, therefore, the term k(x,y) = Q(x,y)/Q(x,y) + 02 is

bounded between 0 and 1. Since Q(x,y) is the variance of the uncorrupted
image pixels, it follows that, for a low signal-to-roise ratio, the noise
will dominate so that k(x,y) * 0 and the estimated %(x,y) is approximately
equal to f(x,y). Conversely, for a high signal-to-noise ratio, Q(x,y)

2, k(x,y) = 1, and the estimate is %(x,y) 3

will be much larger than o
g(x,y), the corrupted pixel at location (x,y).

Implementation of Eq. (2.3.9) is straightforward. Since, from Eq.
(2.3-4), themeans of the original and noisy images are assumed equal, it

follows that T(x,y) can be obtained by computing the average value of the

noisy image, g(x,y), at coordinates (x,y). Similarly, Q(x,y) is obtained i
by computing the difference between the variance of the noisy image at
(x,y) and the noise variance, 02. In other words, letting F(x,y) =

g(x,y) it follows from Eqs. (2.3-5) and (2.3-9) that

\ 2
f(x,¥) = g(x.y) + !;,(-’(‘;L)),-y:—"- [9(x.y) - 3(x,¥)] (2.3-10)
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The approach followed in obtaining g(x,y) and v(x,y) is to use the

e S

local mean and variance computed in a (2n + 1) x (2m + 1) window centered

at (x,y). That is,

x+n ytm

3(xY) * ST s q =zy-m g(k,q) (2.3-11)

and

1 x+n y+m
vix,y) = (Zn+ )(m + 1) K =Zx_n q =Z

y-m (2.3-12)
[o(k,g) - 3(k,g)1°

The procedure is to compute g(x,y) and v(x,y) from the known image g(x,y)
v+x=0,1,2, ..., M-1Tandy =0, 1,2, ..., N- 1. The desired
es ~ate ?(x,y) then follows directly from Eq. (2.3-10) by using a given
value of 02.

T e two principal factors affecting the quality of the estimate
?(x, ' are window size and the value of the noise variance. If the window
is too small, noise filtering will not be effective because, from Eq.

(2.3-11), g(x,y) will be approximately equal to g(x,y) and %(x,y) = g(x,y)

in Eq. (2.3-10). If the window is too large, the estimate will be a
smoothed (blurred) version of the original. Lee [4] reported that a 7 x 7 ?
window appears to be a good compromise. OQur own results verify his

conclusion concerning window size. The effects of 02 are discussed below

and in the following section.




In order to investigate the suitability of Eq. (2.3-10) for noise
reduction, we conducted a number of experimeris using FLIR images [10]
corrupted by computer-generated noise as well as practical FLIR images
obtained in the field under realistic conditions. Figure 2.4(a) shows
an infrared image containing a simple target and Fig. 2.4(b) shows the
same image severely corrupted by Gaussian noise with zero mean and 02 =
300. The result obtained with Eq. (2.3-10) using a 7 x 7 window and the
above known value for the noise variance is shown in Fig. 2.4(c). The
improvements over the noisy image are evident in this picture.

As a more realistic example, Fig. 2.5(a) shows a typical FLIR
image containing two targets and Fig. 2.5(b) is the result obtained using
Eq. (2.3-10) with a 7 x 7 neighborhood and an empirically determined value
of 02 = 60. Although the image was improved considerably, it is of
interest to note that the area above the leftmost target is still quite

2

visibly corrupted. The reason for this is that ¢” is truly unknown for

2 . 60 was not good enough for this

this image and our estimate of ¢
particular area of the image; that is, the noise variance is not only
unknown but it is also spatially variant. An adaptive technique for
estimating the noise variance throughout an image is discussed in the n«xt

section.

2.3.2.2 Adaptive Estimation

An effective implementation of Eq. (2.3-10) for automatic image
processing applications requires that 02 be known with a reasonable degree
of accuracy. Since this parameter is often difficult to estimate in

practice for the full range of operating conditions of most sensors, it




(a)

(b) (¢c)

Figure 2.4. (a) Original, (b) image corrupted by
additive Gaussian noise, (c) result
obtained using Eq. (2.3-10) (Original
image courtesy of Dr. Lewis G. Minor,
U. S. Army, Huntsville, Alabama. ).
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Figure 2.5.

(b)

(a) Original, (b) result obtained using
Eq. (2.3-10) with a 7 x 7 window and
02 = 60. (Original image courtesy of
the Equipment Group, Texas Instruments,
Inc., Dallas, Texas).
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is of interest to have available a procedure which will estimate the noise
variance for a particular input image, thus yielding an adaptive implemen-
tation of Eq. (2.3-10).

The principle behind the procedure discussed below is as follows:
If f(x,y) in Eq. (2.3-1) were constant, the variance obtained from g(x,y)
would in fact be the variance of the noise. When f(x,y) is not constant,
the variance obtained from g(x,y) is greater, being influenced by the
variance of both f(x,y) and n(x,y). When variance estimates are computed
about a neighborhood of a pixel located at (x,y), the variance of the
noise may be approximated by the smallest of the variances obtained at

each pixel in the neighborhood of {x,y). In other words, the smallest

variance should occur when f(x,y) is constant and :.:, therefore, an esti-
mate of the noise variance at (x,y).

This idea was employed in developing an adaptive estimator of the
noise variance. In each 7 x 7 window located at (x,y), x = 0, 1, 2, ...,
M-1,y=0,1,2, ..., N -1, the variances of all neighbors of (x,y)
in the window were cowputed in a 7 x 7 window about the point in question.
That is, for any point (s,t) inside the window centered at (x,y) we
defined a 7 x 7 window centered at (s,t) and computed the variance of the
points inside this new window. This procedure yielded 49 variance esti-

mates around every point (x,y) in an image. In order to allow for

variations due to the small size of the window, the average of the §

2 for use

smallest variances was computed and designated as the variance o
in £q. (2.3-10) at location (x,y) in the image.
The results obtained with this technique were considerably better

than those obtained using a constant value for 02, as illustrated by the
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images shown in Fig. 2.6. Part(a)of this figure shows che same original
; considered in the previous section and Fig. 2.6(b) is the result obtained
with the adaptive variance estimator. By comparing this image with
Fig. 2.5(b) it is noted that noise reduction in the area above the left-
most target was effectively accomplished using the adaptive method. As

another illustration of the power of this technique, Fig. 2.6(c) shows a

more complex FLIR image and Fig. 2.6(d) is the result after processing
with the adaptive variance estimator. The improvement of the processed

images over the originals is quite clear in these results.

2.3.3 Enhancement
Another important preprocessing function in scene analysis is i
enhancement. As in the case of noise reduction, enhancement techniques
may also be divided into frequency-domain and spatial-domain methods [3].
The approach in the frequency domain ic exactly the same as the one dis-
cussed in Section 2.3.2, with the exception that filters are chosen to
highlight a given frequency range (e.g., high-frequency emphasis for
image sharpenning). The limitations of frequency domain discussed in
Section 2.3.2 also apply to enhancement algorithms based on this approach.
Many spatial domain techniques for image enhancement have the poten-

tial for real-time implementation. The methods discussed in this section

are based on histogram processing techniques. These methods are illustra-
tive of algorithms which can be implemented in real *ime and which have
the important property of automatic adaptability to changing scene

conditions.
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A histogram of the gray levels in an image provides a global descrip-
tion of its appearance. The two principal methods of histogram process-
ing are histogram equalization (also czllied histogram linearization or
histegram flattening) and histogram specification [11-17].

In hi- togram equalization, the approach is to transform the pixels
of the input image so that they will have a flat (uniform) histogram.

The motivation for this type of processing is to increase the dynamic

range of the intensity values of an image and thus improve its overall

appearance.

Histogram specification techniques attempt to transform the pixels
in an image so that their histogram will have a pre-specified form.
There are two basic approaches used in histogram specification. The '3
first is to use interactive techniques where a human operator provides
a historam shape and evaluates the results by trial and error. The
second involves the use of a priori knowledga about what the resulting
histogram should be. An example ¢f this is found in computer processing
of chest radiographs. Chest x-rays that have been developed properly have
characteristic histograms which may be obtained by averaging the histo- i
grams of a set of samples. This average histogram can then be used as ‘ ;

the norm for mapping, by means of histogram specification techniquas, the

intensity values of a given x-ray which has been improperly developed.

2.3.3.1 Histogram Equalization
Let r represent the intensity of the input pixels. Assume for a
moment that r is a continuous variable in the range 0 < r < 1 and with

probability density function pr(r). If r is transtormed to a new intensity
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variable s by means of the transformation function
s = T(r)

it follows from probability theory that

I d
p.(s) = Lp (r) —':l
5 r ds .= T'](s)[

where it is assumed that T(r) is a monotonic function.

In histogram equalization, we choose

r
s = T(r) = f P, (w)dw
0

(2.3-13)

(2.3-14)

(2.3-15)

where w is a dummy variable of integration. By substituting (2.3-15)

into (2.3-14) we obtain

lﬁl 0<s <1

pe(s) = <
[0 elsewhere

which is seen to be a flat or uniform density.

In the discrete case, pr(r) is approximated by

n
_ Mk
pl"(rk) -

where n is the total number of pixels in the image and un is the number of

(2.3-16)

(2.3-17)

pixels with discrete intensity value k. The transformation for histo-

gram equalization then becomes

.




il 1%

s, = T(r ) =
kR 53

where L is the number of discrete levels in the image. In practice, ps(sk)

is an approximation to ps(s) and, consequently, it is seldom perfectly

uniform.

Based on the above discussion, we see that histogram equalization is

straightforward. It consists of mapping each input pixel with value

i into a pixel with value S where Sk is given by Eq. (2.3-18).

2.3.3.2 Histogram Specification

The procedure for histogram specification is slightly more compli-
cated. To see how this can be accomplished, let us return for a moment
to continuous gray levels, and let pr(r) and pz(z) be the original and
desired probabiliiy density functions, respectively. Suppose that a

given image is first histogram equalized using Eq. (2.2-15); that is

s = T(r) = Jr pr(w) dw (2.3-19)
0

If the desired image were available, its levels could also be

equalized by using the transformation function

z
v = G(z) = IO pz(w) dw (2.3-20)

The inverse process, z = G'](v), would then yield the desired levels back.

This, of course, is a hypothethical formulation since the z levels are

precisely what we are trying to obtain. It is noted, however, that

n
—;1 k=0, 1, ..., L -1 (2.3-18)
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ps(s) and pv(v) would be identical uniform densities since the final

result of Eqs. (2.3-14) through (2.3-16) is independent of the density.
' Thus, if instead of using v in the inverse process we use the uniform

levels s obtained from the original image, the resulting levels, z =

G'](s), weuld have the desired probability density function. Assuming

that G'](s) is single-valued, the procedure can be summarized as follows:
(1) Equalize the levels of the uriginal image using Eq. (2.3-15),

(2) Specify the desired density function and obtain the trans-
formation function G(z) using Eq. (2.3-20).

(3) Apply the inverse transformation function, z = G"(s) to
the levels obtained in Step 1.

This procedure yields a processed version of the original image where the

new gray levels are characterized by the specified density pz(z). A ]
discrete formulation of this method parallels the development of Egs.
(2.3-17) and (2.3-18), and the mapping G'](s) is accomplished in the

discrete case by rounding G'l(s) to the nearest allowable discrete pixel

value. ]

Figure 2.7 illustrates the enhancement capabilities of the histogram

equalization technique, which is automatic since no operator interaction

is required. The histogram of the images on the left side of Fig. 2.7

woulcd be expected to span two relatively narrow gray-level ranges; the
pixels of the corresponding enhanced images on the right side of Fig. 2.7
cpan a considerably larger spectrum of the gray-level scale. As is
characteristic of this method, a simple spreading of the gray-level his-

togram can have a remarkable effect on the output image.




Figure 2.7.

Examples of images before (left) and after
(right) histogram equalization.
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Although, as shown in Fig. 2.7, histogram equa]izatioﬁ can yfeld
excellent enhancement results, this approach often fails to bring out
high contrast details in an image. An example of this is given 13 Fig. 2.8.
The image on the top left is the original and the image on thé tob right
is the result after histogram equalization. For all practical purposes,
this result is of little use because it failed to bring out the obscure
side of the knight. The image displayed at the bottom of Fig. 2.8 was
obtained by interactive histogram specification [17]. It is noted that
the detail on the obscure side of the knight was vividly brought out by

this approach.

2.4 Segmentation

Segmentation is the process that breaks up a sensed scene into its
constituent parts or objects. Virtually hundreds of segmentation aigo-
rithms have been proposed in the Titerature over the past fiftéen years
[18-20]. Not surprisinaly, this is still an active area of research be-
cause of its importance in any practical scene analysis application.
Since what we as humans define as objects in a scene is the result of
mental processes that are not well urderstood, present analytical techni-
ques for extracting structural information from pictorial data are
necessarily heuristic in nature and very much application oriented. The
segmentation problem is further compounded by a lack of parallei process-
ing approaches which would allow the system to perceive a scene in a global
way. Thus, most segmentation algorithms in use today are oriented toward
processing small regions in an image, with the 1imiting special case of

point-by-point processing techniques.
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Figure 2.8. Original image (top left) and results after
histogram equalization and histogram
specification.
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Algorithms for segmentation range from thresholding [21, 22] and line
detection techniques [3], to region growing, merging, and splitting [23,
f 24] using features such as texture and local contrast differences. Attempts
to incorporate some degree of contextual information into the segmentation
process include the use of relaxation techniques [25], plan-guided
analysis [26 - 28], and the use of semantic information [29].
Basically, segmentation techniques may be classified as either edge-

based or region-based [3, 30, 31]. The former extracts edges according

to the local properties of an image, such as gradient or Laplacian pro-
perties and is often sensitive to local noise. The edges produced are

usually broken and difficult to use for object location. The region-

based methods exploit the global properties of the images in segmentation
(e.g., histogram analysis), and are more stable. An advantage is that 1

edges which are region boundaries are naturally closed. The closed edges

are often also more suitable for shape description or vertex location.
However, pert. & region segmentation is rarely obtained through global ’
methods such as histogram analysis. The principal problem is that false
regions may also be detected along with the true object regions due to
the imperfection of a threshold selection or variations in scene
illumination. . 1
Previous .ffort \ segmentation using local edge information have

used a threshold selected from the image histogram according to the

Laplacian properties of an image [21]. This technique was reported to
be successful for bimc histogram segmentation. However, the selection
of multiple thresholds on a multimodal histogram is often crucial in

scene segmentation. The mode method [32] in whick the thresholds are
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set at the minima between the modes of the histogram has been used suc-
cessfully in segmenting images of white blood cells. The method involves
histogram smoothing, mode searching and threshold setting. For natural
scenes, too many regions are often segmented if the histogram has not been
smoothed and too few regicns are detected if the histogram has been
overly smoothed. There are two ways to improve the segmentation results,
splitting the regions [22, 33] due to oversmoothed histograms or merging
the false regions due to undersmoothed histograms [23]. The former is a
top-down segmentation method. The regions resulting from oversmoothing
must be divided or split into subregions. The latter is a bottom-up
segmentation method; the regions resulting from undersmoothing the
histogram must be merged together. Either the top-down or the bottcm-up
approach will improve the segmentation results of the mode method.

For a scene with solid objects, the edge intensity between two
regions located on the same surface in the scene is much weaker than
that between two different surfaces. Based on this property, two regions
with weak adjacent edge intensity are very likely to be on the same
surface and need to be merged. On the other hand, two regions with
strong adjacent edge intensity are likely to be on different surfaces
and should remain separate. Therefore, the local edge intensity at the
adjacent boundaries of two regions can be used as a merge criterion for
bottom-up segmentation. The edges which have magnitude greater than a
preselected percentile on the edge intensity histogram are considered
as strong edges. A group of regions being merged are said to be in an

equivalence class under this merge criterion.




(R

The basic techniques involved in segmentation are fllustrated in
this section by means of a procedure which combines global and local
information. The technique, called Global-Local-Edge-Cofncidence (GLEC),
is basically a split-and-merge segmentation method. The results of GLEC
appear equivalent to selecting thresholds on a multimodal histogram;
however, the processing method is designed to find the equivalence
classes of the atomic regions which are generated by an undersmoothed
histogram segmentation method according to a reference map consisting of
the "expected" region boundaries. The expected boundaries are located
using local edge information. The reference map is produced by binary
correlation of the strong local edges with the atomic region boundaries of
the image. Althouch edges are used to discuss the map generation, r*her
features in an image, such as region contrast and texture similarity,

may also be used to generate the reference map.

2.4.1 Segmentation Using a Reference Map

Image segmentation can be considered as a problem of partitioning
an image into subsets by defining an equivalence relation on the pixels
in the image array such that all the pixels in a region will be in an
equivalence class [33, 34]. To segment an image from the given region
boundary map is equivalent to partitioning the non-boundary pixel subset
of an image by using an equivalence relation. Consider a set of bound-
ary pixels Bb and a set of non-boundary pixels Bn in an N X M array S.

Then

S =8, UB, (2.4-1)
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If a subset R] of Bn such that the elements Piys Byp oo Py, in Ri

are in an equivalence class, i.e., pi] N e Py, where ~ is an equivalence

relation among the non-boundary pixeis in Bn’ then Pire Pyor o Py,
are the interior pixels of region i. If k equivalence classes can be

partitioned in Bn. then there will be k regions in the image S and

B.= U R (2.4-2)

An equivalence relation can be defined on the ncon-boundary pixels:
two pixels p and q are said to be equivalent to each other if no edges
can be found between them. It is obvious that all the interior pixels
of a region will be in an equivalence class. After all the interior
pixels of the regions are determined, the segmented image can be ob-
tained by splitting and merging the boundary pixels in Bb to all the
regions Ri‘ A boundary pixel is merged to a region which has more
interior pixels adjacent to it. If two regions have the same number
of adjacent pixels to a boundary pixel, then this pixel will be merged
to the one with highest priority. The merging priority is assigned
according to a clockwise sequence, as shown in Fig. 2.9,

The foregoing concepts may be illustrated by the following example.
Figure 2.10 is a given region contour map. The shaded area in
Fig. 2.10 represents the given region contour of the image. If the non-
boundary pixels are labelled according to a top-bottom and Teft-right
manner, it is clear that pixel 1 is equivalent to pixel 2 and is also
equivalent to pixel 3 since the equivalence relation is transitive.

Also note that there are three equivalence classes in Fig. 2.10 which
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Figure 2.9. The merging priority.
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Figure 2.10. Example of segmentation by using a given region
contour map. The shaded area are the region
contours.
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have been relabelled in Fig., 2.11. The final segmented results can be
obtained by splitting and merging the given contour of Fig. 2.11, as
shown in Fig. 2.12. This result shows that if the region boundaries can
be determined from an image, then segmentation may be reduced to a pro-
blem of finding the equivalence classes by using these boundaries as a
reference. In the next section, a method using Global-and-Local- Ecige-
Coincidence will be described to generate the expected region boundaries

of the objects in the scene.

2.4.2 Generating the Boundary Map Using Global-Local-Edge-Coincidence
In a scene with solid objects, the edge intensity between two
regions located on the same surface of an object is much weaker than i

that between two different surfaces. Based on this property, the edges
with high intensity (large gradient values) are the most likely object
boundaries. A comparison study of several edge detectors [35] showed that

the 10 to 20 percentile of high-intensity local edges are meaningful and

visually perceptible in many images. Also, the majority of object bounda-
ries are among the meaningfui edges. Selecting a percentile in the edge
intensity histogram to obtain all the object boundaries is scene-content
dependent. A trial and error method is usually required. Whenever a

threshold is set in the edge-processed image, some of the local line

edges will also be segmented along with the object boundaries. Also, the !
edges corresponding to the object boundaries in the thresholded edge map ?
may not be the closed edges due to nonuniform surfaces or uneven illumi-
nation of the object in the scene. For broken boundaries, the segmenta-

tion method described in Section 2.4.1 will generally fail because the




Figure 2.11. The three equivalence classes of Fig. 2.10.
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Figure 2.12. The final segmented results by splitting and
merging the shaded area of Fig. 2.10.
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nonboundary pixeis of two surfaces may be classified as one equivalence
class due to the transitive relation at the broken boundaries.

One of the common features in a scene with solid objects is that
the area of the object boundaries is usualiy smaller than that of the
surfaces. The image intensity of the object boundaries often corresponds
to the minima in the intensity histogram [32]. Therefore, the mode method
is applicable for segmenting the object boundaries; however, the thres-
hold setting of the histogram depends on the degree of smoothing. In addi-
tion, even if an appropriate threshold segments a meaningful region in an

image, it may also generate a false region at another part of the image.

For instance, the window of a building may be segmented by setting a

certain threshold in the histogram; a false rébion may a'so be generated {
on the roof due to the same threshold. However, if the histogram is

undersmoothed, too many regions will be generated due to over-specifying

the thresholds in the histogram; the real object boundaries are still

contained in the segmented region boundaries or portions of the region

boundaries of certain regions. The object boundaries will be generated

if those false region d;uﬁdaries can be eliminated. In order to avoid

ambiguity, the regions which are segmented by using the mode method are

called atomic regions. The boundaries of the atomic regions are called

atomic region boundaries or global edges in the following discussion.

Since both the global edges and the strong local edges contain the
real object boundaries, it is appropriate to use this information to
produce the "expected" region boundary map. Experimental results show
that most of the object boundaries corresponding to global edges will

match the strong local edges in the vicinity of one pixel. By using
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this property, the region boundary map may be determined in the following
way.
A1l the atomic regions are first labelled according to a top-bottom

and left-right sequence. Boundaries of all the atomic regions are then

detected and correlated with the local edge information. Assume that
R(i,j) is a region-image array and E(i,j) is a local-edge array. Let
R(i,J) = 1 for all the atomic boundary points in R and E(i,j) = 1 for f
all the edge points in E if E(i,j) > T. A1l other entries in R and E ;
are zero.

Then a binary reference map CT is generated according to the

following zalculation:

Cr(1,d) = R(1,3) - [ECE3 - 1)+ E(i + 1,3) + E(H - 1,3) !
(2.4-3)
+E(4.5 + 1)]

where . is the logical AND and + is the logical OR. It is noted that
CT(i,j) is the binary cross correlation result of the atomic region j
boundaries and the intensity thresholded local edges with their four
adjacent neighbor pixels. T is a selected threshold of edge intensity
in the edge-processed image.

Next, a coincidence test of the adjacent edges between the atomic .

regions is used to produce the expected region boundary map and provide 3

the merge information for segmentation. Consider Auv as the adjacent
edge between region u and region v consisting of & boundary points, such

that

Ay = (PysPps 05 P} (2.4-4)
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Let
21
Q = 7 Z] CT P; (2.4-5)

Then Q is the percentage of match of the adjacent edge Auv with the

reference CT. The entire adjacent edge of the atomic regions will be

retained in the expected region boundary map if Q > TC' Atomic region u
and atomic region v are assumed to be in the same equivalence class and
will be merged together if G 5-TC’ vhere TC is a number that defines the
acceptable threshold of the percentace of match in the coincidence test.
This test is conducted on all the adjacent edges of the atomic regions
until the expected region boundary map is produced. Then the segmented :
picture may be produced by finding the egquivalence classes using this
generated region boundary map as a reference. i
The procedure for generating the region boundary map using the
global-local-edqe-coincidence may be illustrated by the following example.
Assume that four atomic regions are segmented, as shown in Fig. 2.13. The
shaded area shows the atomic region boundary pixels. The boundary
pixels adjac?ﬂt to ab, bc, de, df are the adjacent edges of region 1 and

region 3, regidn 1’and region 2, region 2 and region 4, region 3 and

region 4, respectively. Further, assume that the strong edges of ‘ne

image are shown in Fig. 2.14. Then Fig. 2.15 shows the result of binary f
correlation of Fig. 2.14 with the atomic region boundaries of Fig. 2.13. |
Figure 2.16 shows the expected region boundary map after the GLEC test.

Using this boundary map as the reference, region 1 will be merged with
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Figure 2.13. Four atomic regions are shown in this figure.
ab,bc,de, and df are the adjacent edges
between region 1,3; 1,2; 2,4; and 3.4,
respectively.

] |

Figure 2.14. The shaded area shows the strong edges.




Figure 2.15. The result of binary correlation of
the atomic region boundaries with

the strong edges.

Figure 2.16. The region boundary map after the
GLEC test.
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region 3. Figure 2.17 shows the final segmentation results. Note that

E edges A, B, and C in Fig. 2.14 are the strong local line edges.

2.4.3 Selection of the Local Edge Operator
The majority of edges in an image can be detected by a gradient or

modified gradient edge operator. Yhe edge detection approach discussed

1 in this section is based on the Sobel operator [3]. This purticular
operator has been shown to be quite useful in a rumber of comparison

experiments involving a variety of edge detectors [35, 36].

2.4.4 Data Structure for Boundary Pixel Storage
The adjacent edges may be used in the coinciuence test to determine
how to merge the atomic regions. The data points of the adjacent edges t
can be stored by using a three-level hierarchical structure, based on
the indexed address and the stored record address concepts to assure

efficient use of memory. The atomic regions are first labelled by a

sequence of numbers according to a top-bottom and left-right manner.

by e b,

The first level of the structure is a one-dimensional array. The
location i of this array stores an index address which points to a 1

location on the second level of the structure, which is a two-dimensional

array. In this array, the region label of a region adjacent to region i
is stored in the first row and the address of the corresponding boundary j
points of the adjacent edges is stored in the second row. If more than |
one region is adjacent to region i, the region labels of these adjacent

regions and the addresses of the corresponding boundary points of the

adjacent edges may be sorted and stored consecutively in this array. An

end mark is inserted to separate the adjacent region labels and the
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The final segmentation result.

Figure 2.17.
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addresses of tﬁe corresponding boundary points of two regions. The

third level of the structure stores the boundary points of the adjacent
edges which are addressed by the second level of the structure. Each
boundary point set of adjacent edges is also separated by an end mark. The
data structure is illustrated in Fig. 2.18. Region i is adjacent to region
J and region k; the addresses of Pj and Pk are the locations of the
boundary point set of the adjacent edges Aij and Aik at the third level

of the data structure.

2.4.5 Tracing the Adjacent Edges of Regions

Four-connective adjacency may be used for classifying the interior
pixels and the boundary pixels of a region. A pixel in a region is
classified as an interior pixel if all of its four most adjacent neighbor
pixels have the same region label as this pixel; otherwise, it is a bound-
ary pixel. However, eight-connective adjacency can be used for tracing
the adjacent edges between the regions. An eight-word buffer is used to
store the region labels of the eight adjacent pixels of a boundary pixel.
The region labels stored in the buffer indicate the region to which this
boundary pixel is adjacent. Each boundary pixel may be adjacent to more
than one region; however, only the boundary pixel of a single-pixel
isolated region may be adjacent to eight different regions simultaneously.
The boundary pixel and the adjacent region labels may be sorted and

stored in the previously mentioned data structure.

2.4.6 Partitioning the Atomic Regions into Equivalence Classes
The boundary point set of the adjacent edges between two regions

ray easily be retrieved from the data base. If the adjacent edges of
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these two regions satisfy any of the criteria specified in GLEC test,
they are in the same equivalence class and need to be merged together.

| To partition the equivalence classes in a set is a problem of determining
the transitive closure of a set [37]. In graph-theoretic terms, all the
elements in an equivalence class which are strongly connected in a graph
may be considered as a superncde and replaced by a proxy element [38].

In GLEC, this is equivalent to designating a new label to replace all the

old atomic region labels in an equivalence class. An efficient algorithm

is presented in this section to partition the atomic regions into

equivalence classes and relabel these classes at the same time.

This algorithm uses 1 one-dimensional array for which location i
stores the class label which indicates the equivalence class to which the
region belongs. Assume that the class label of region Ri is Li' Beforg
the GLEC test, an i is stored in location i since all the atomic regions
are in different classes; the region label is used as the class label.
Since the adjacent edges are stored in a sequential linear list, the GLEC
test will be sequentially processed region by region, starting from
region one. Also, the adjacent edges of Auv and Avu are processed simul-
taneously in the GLEC test. The atomic region may be classified into the

equivalence classes due to the transitive nature of an equivalence relation

by the following decisions:

1. For Ru N Rv’ ifu>v, leti=v, J=u; otherwise j = v,
i = u.

2. For Li < Lj, and Lj = J, thenLj = Li’ go to 6.
3. If L‘j = Li’ go to 6.

4, If L1 < Lj and Lj # Jj, for all n let Ln = Li if Ln = Lj; go
to 6.
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5. If Li < LJ for all n let Ln = Lj if Ln = L

i
6. Next equivalence relation.
} The final step is to reassign the class labels in the array to a
sequence of numbers. A simple example may be used to illustrate these
steps. Assume that the following sequence of relations are obtained
through the GLEC test: R-| a R2, R] " R4, R3 ~ R8’ RS "\ RG’ RS " Rg, R6 N
R9, R7 " RS’ R8 n Rg. Then, Fig. 2.19 shows the sequence of the classi-
fication results. There are two equivalence classes in this example:
R-|f\:RzmR4andR3'~aR5mR6'\aR7mR8mR9.

2.4.7 Merging Small Atomic Regions Whichare Coincident with Strong
Local tdges

As previously described, the region boundary map may be produced by
the coincidence test of the global and local edges. However, some of 1
the small atomic regions may not be merged if the entire region or a
great portion of this region is coincident with the strong edges. As
a result, the resulting ragion boundary map will always contain the
region boundary of these small atomic regions. These atomic regions

may be considered "false" regions since they are at the same location as

the strong edges. To merge these small regions, the following decision
rule is used. If the overlapping arez of a region and the strong edges

is greater than a threshold, then this region will be merged to an adja-

cent region with the smallest contrast from it. The contrast of the |
two regions is defined as the absolute difference of the average gray i

level of two regions.
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2.4.8 Adjusting the Region Boundaries

The global edges and the local edges are assumed coincident to each
other if either one matches the other in a four-connective manner.
Therefore, the worst case of the result using the previous steps will be
that some of the adjacent edges will be two pixels away from the real
object boundaries (or the strong edges). A better match may be obtained
by shifting and merging the boundaries between two regions. As shown in
Fig. 2.20, let Auv = {a,b,c,d} and Avu={a',b',c',d'}. Then, the region

boundaries of region u and region v will still be considered as coincident

with the strong local edges, shown as the cross-hatched area of Fig. 2.20,

since one of them (Avu) is four-connective adjacent to the strong edges.
However, the boundary points of Auv are two pixels away from the strong
edges, and those of Avu are one pixel away. Therefore, it is appropriate
to shift the boundaries of Auv such that a better match of the global
edges and the local edges may be obtained. In GLEC, a shift test is i
performed on the two related adjacent edges, i.e., Auv and Avu of region ,
u and regior v. This test results in a shift of one of the adjacent
edges, Auv’ to improve the percentage of complete match of the global
edges and the local edges. 1t is evident from Fig. 2.20 that AVu will
have a higher percentage of the one pixel away global-local match edges

than Auv of region u and region v. This test results in a shift of one of

the adjacent edges, Auv’ to improve the percentage of complete match of ;
the global edges and the local edges. It is ncted in Fig. 2.20 that Avu |
will have a higher percentage of the one pixel away global-local match
edges than Auv’ The points of e, f, g, hand e', f', g', h', are the

interior points of region v; therefore, if the initial boundary points
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Figure 2.20. Shifting the adjacent edges of two
regions will result in a better match
of the gliobal edges and the local

edges.
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of region v, i.e., points a', b', c', d', are merged to region u, this
will result in & better match of the global edges and local edges. The
same test is applied repeatedly until no further improvement can be made
at these adjacent edges of region u and region v. The final adjacent
edges of Auv will contain the points of e, f, g, h; and Avu will contain
e', f', g', h'. By applying this method, the final region boundaries

will have a better match with the strong local edges.

2.4.9 Examples of Segmentation Using the GLEC Technique
Four images are used in this section as examples for low-level object ﬂ

location using GLEC segmentation. These images include blocks, a build-

ing, aerial photographs, and a computed tomography image of & chest

section. !
The atomic regions for GLEC segmentation were generated by slicing

the intensity histogram of the image into bands at its local minima,

which were determined in the following way: The histogram was first .

slightly smoothed by an exponential filter in the spatial frequency domain

[3]. The decay constant of this filter was set at 50 for all the segmen-

tation ex%mp.es in this section. The points with more than two consecu-

tively increasing and decreasing values (i.e., up-up-down-down) were

selected as the local maxima. The local minima were searched and set

between the local maxima. The adjacent pixels were merged into an
atomic region if the intensity level of these pixels corresponded to

the same band in the intensity histogram. A region label was assigned
to each atomic region using a region-growing technique [3]. This region

label represents the subordination of a pixel to the atomic region.




The threshold for segmenting the local edges is scene-content
dependent. It varies for different scenes. The histogram percentile
chosen for segmenting the strong edges varied from 12% to 30%, depend-
ing on the complexity of the scene content. For segmenting these scenes,
only a single pass of GLEC method was applied.

A simple scenc zonsisting of a block, a cylinder and a triangular-
block-section is shown in Fig. 2.21(a). After applyirg the mode method,
the scene was segmented into atomic regions. Figure 2.21(b) shows the
outer boundaries of the atomic regions. Note that there are many false
regions segmented which need to be merged. The first step is to split
and merge the pixels of the small size regions to the most adjacent
region of these pixels. This split-and-merge step may be considered as
defining the resolution of the GLEC segmentation. For instance, split-
ting and merging the atomic regions with size less than 3 pixels in
Fig. 2.21(b), resulted in 183 such regions. Then these atomic regions
were labelled according to the top-bottom and left-right sequence dis-
cussed previously. At this point, a region boundary map is required to
start the GLEC segmentation. Figure 2.21(c) shows 14% of the highest
intensity edges in the scene. Figure 2.21(d) shows the result of a
binary correlation between 2.21(b) and 2.21(c). Then a coincidence test
was conducted such that if the match of the adjacent atomic region bounda-

ries and the edges in Fig. 2.21(d) was higher than 95%, the whole adja-

cent atomic region boundaries was retained; other